

## DPG Institute of Technology and Management Sector 34, Gurugram HR -122004

#### **Lesson Plan**

**Course Name: Physics-II (Optics and Waves)** 

Faculty Name: Dr. Dhananjay Verma

#### **Lesson Plan**

| No. of Lecture<br>Hours/Week | 3           | Exam Hours | 3  |
|------------------------------|-------------|------------|----|
| Total No. of Lecture Hours   | 40          | Exam Marks | 75 |
| Course Code                  | BSC-ME-201G |            |    |

#### Objectives of the course:

- 1. To have an insight into the oscillations and waves fundamentals.
- 2. To be able to identify and illustrate physical concept and terminology used in oscillations and optics and explain them inappropriate detail.
- 3. To acquire skills allowing the student to identify and apply formulas of optics and physics using coarse literature.
- 4. To develop a basic understanding of lasers and optical fibres and their usage in communication, optoelectronic devices, medical, etc.

### **Detailed Lesson Plan**

| Lecture<br>No. | Торіс                                               | Teaching<br>Methodology | Class Activity           | Remarks |  |  |  |  |  |  |
|----------------|-----------------------------------------------------|-------------------------|--------------------------|---------|--|--|--|--|--|--|
| Unit-1         |                                                     |                         |                          |         |  |  |  |  |  |  |
| 1              | Introduction to oscillatory and periodic motion     | Chalk & Lecture         | Lecture with Interaction |         |  |  |  |  |  |  |
| 2              | Simple harmonic motion                              | Chalk & Lecture         | Lecture with Interaction |         |  |  |  |  |  |  |
| 3              | Differential equation of S.H.M.                     | Chalk & Lecture         | Lecture with Interaction |         |  |  |  |  |  |  |
| 4              | Damped and forced harmonic oscillator               | Chalk & Lecture         | Lecture with Interaction |         |  |  |  |  |  |  |
| 5              | Differential equation of damped harmonic oscillator | Chalk & Lecture         | Lecture with Interaction |         |  |  |  |  |  |  |
| 6              | Mechanical and electrical harmonic oscillator       | Chalk & Lecture         | Lecture with Interaction |         |  |  |  |  |  |  |
| 7              | Quality factor                                      | Chalk & Lecture         | Lecture with Interaction |         |  |  |  |  |  |  |

| 8  | Forced mechanical and electrical oscillator                                               | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------|-----------------|--------------------------|--|--|--|--|--|--|
| 9  | Differential equation of forced harmonic oscillator                                       | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 10 | Phase, superposition                                                                      | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
|    | Unit-2                                                                                    |                 |                          |  |  |  |  |  |  |
| 11 | Sinusoidal waves (concept of frequency and wavelength)                                    | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 12 | Type of waves                                                                             | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 13 | Transverse vibrations of stretched strings                                                | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 14 | Longitudinal waves in solids and gas (sound)                                              | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 15 | Wave group and group velocity                                                             | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 16 | The matrix method in paraxial optics (unit and nodal plane)                               | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 17 | Fermat's principle and its application (Mirage effect, laws of refraction and reflection) | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 18 | Light as an electromagnetic wave and Fresnel equations                                    | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 19 | Reflectance and transmittance                                                             | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 20 | Brewster's angel and total internal reflection                                            | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
|    |                                                                                           | Unit-3          |                          |  |  |  |  |  |  |
| 21 | Huygen's principle                                                                        | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 22 | Superposition of waves                                                                    | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 23 | Interference of light by wavefront splitting and amplitude division                       | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 24 | Young's double slit experiment                                                            | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 25 | Newton's rings                                                                            | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |
| 26 | Michelson interferometer                                                                  | Chalk & Lecture | Lecture with Interaction |  |  |  |  |  |  |

| 27 | Fraunhofer diffraction from a single slit                                                       | Chalk & Lecture | Lecture with Interaction |  |
|----|-------------------------------------------------------------------------------------------------|-----------------|--------------------------|--|
| 28 | The Rayleigh criterion for limit of just resolution and its application to vision               | Chalk & Lecture | Lecture with Interaction |  |
| 29 | Diffraction grating (Transmission)                                                              | Chalk & Lecture | Lecture with Interaction |  |
| 30 | Diffraction grating dispersive and resolving power                                              | Chalk & Lecture | Lecture with Interaction |  |
|    |                                                                                                 | Unit-4          |                          |  |
| 31 | Einstein'stheory of matter radiation interaction-absorption & emission                          | Chalk & Lecture | Lecture with Interaction |  |
| 32 | Spontaneous and stimulated emission of radiation                                                | Chalk & Lecture | Lecture with Interaction |  |
| 33 | Relation between Einstein's coefficient of stimulated emission and absorption                   | Chalk & Lecture | Lecture with Interaction |  |
| 34 | Population inversion (light amplification)& pumping in laser                                    | Chalk & Lecture | Lecture with Interaction |  |
| 35 | Three and four level laser systems                                                              | Chalk & Lecture | Lecture with Interaction |  |
| 36 | Characteristics of laser beam:<br>mono-chromaticity, coherence,<br>directionality and intensity | Chalk & Lecture | Lecture with Interaction |  |
| 37 | Gas laser (He-Ne, CO <sub>2</sub> )                                                             | Chalk & Lecture | Lecture with Interaction |  |
| 38 | Solid-state laser (Ruby, Neodymium)                                                             | Chalk & Lecture | Lecture with Interaction |  |
| 39 | Laser speckles                                                                                  | Chalk & Lecture | Lecture with Interaction |  |
| 40 | Applications of lasers                                                                          | Chalk & Lecture | Lecture with Interaction |  |

## **Suggested Reference Books:**

- 1. I. G. Main, Vibrations and waves in physics, Cambridge University Press (1993).
- 2. H. J. Pain, The physics of vibrations and waves, Wiley (2006).
- 3. A. Ghatak, Optics, McGraw-Hill Education(2012).
- 4. E. Hecht, Optics, Pearson Education (2008).
- 5.O. Svelto, Principles of lasers, Springer Science and Business Media (2010).

# **Course Outcomes:**

At the end of the course, the student will be able:

| CO201.1 | To analyse the harmonic oscillator systems.                                   |
|---------|-------------------------------------------------------------------------------|
| CO201.2 | Understanding the wave properties from a microscopic model.                   |
| CO201.3 | Analyse optical phenomena like diffraction and interference.                  |
| CO201.4 | Understanding spontaneous and stimulated emission of radiation, optical       |
|         | pumping, population inversion, three-level and four-level lasers. Ruby, He-Ne |
|         | laser in detail and its applications.                                         |

# **CO-PO-PSO Mapping:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO | РО | РО | PSO | PSO | PSO |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|-----|-----|-----|
|     |     |     |     |     |     |     |     |     |     | 10 | 11 | 12 | 1   | 2   | 3   |
| CO1 |     |     |     |     |     |     |     |     |     |    |    |    |     |     |     |
| CO2 |     |     |     |     |     |     |     |     |     |    |    |    |     |     |     |
| CO3 |     |     |     |     |     |     |     |     |     |    |    |    |     |     |     |
| CO4 |     |     |     |     |     |     |     |     |     |    |    |    |     |     |     |

Signature of Staff In-charge

Signature of HOD