

DPG Institute of Technology and Management

Sector 34, Gurugram HR 122004

Lesson Plan

Course Name: Network Theory

Faculty Name: Dr. Sonu Rana

No. of Lectures Hours/Week	3	Exam Hours	3
Total No of lectures	37	Exam Marks	75
Course Code	PCC-ECE-211G		

Course Objectives:

- 1. To develop fundamental knowledge in the analysis of electric networks and circuit theorems.
- 2. To analyze single-phase and three-phase (star and delta) circuits effectively.
- 3. To compare and apply tie-set and cut-set methods for circuit analysis.
- 4. To design different types of filters and understand two-port network parameters and their transformations.

Lecture No.	Topics to be Covered	Teaching Methodology/Pedagogy	Class Activity	Remarks							
	Section-A, Unit-1, CO-C204.1										
1	Subject Introduction, importance and applications of Network Theory	Simple talk and examples	Group discussion on practical uses								
2	Basic circuit elements (R, L, C) and their voltage- current relations	Board explanation with waveforms	Solve basic problems								

3	Ohm's Law, Kirchhoff's Voltage and Current Laws	Derivation and examples	Numerical exercises
4	Source transformation and source conversion	Step-by-step derivation	Solve examples
5	Star–Delta and Delta–Star conversion	Diagram and formula method	Class problem solving
6	Mesh and Nodal analysis	Board and step explanation	Solve simple network problems
7	Superposition theorem	Numerical examples	Group activity
8	Thevenin's and Norton's theorems	Derivation with circuit diagrams	Solve questions in pairs
9	Maximum Power Transfer theorem	Board work and derivation	Class exercise
10	Test and revision	Quiz/discussion	Worksheet
	Sec	tion-B, Unit-2, CO-C204.2	2
10	Concept of Transient and Steady-State Response	Simple explanation with examples	Q&A session
11	Transient response of RL circuit with DC excitation	Step-by-step derivation	Solve simple problems
12	Transient response of RC circuit with DC excitation	Board work and graphs	Numerical worksheet
13	Transient response of RLC circuit	Analytical derivation	Practice exercise
14	Time constant and natural response	Explain using waveform	Short quiz
15	Sinusoidal steady- state analysis in RLC circuits	Diagram and example	Solve examples

16	Average and RMS values, form factor, peak factor	Tabular explanation	Numerical worksheet		
17	Unit Test and Discussion	Recap of concepts	Oral test and worksheet		
	Sec	etion-C, Unit-3, CO-C204	3		
18	Series resonance in RLC circuits	Derivation with waveform explanation	Solve numerical problems		
19	Resonant frequency, bandwidth, and quality factor (Q)	Board explanation with examples	Calculate Q- factor for given data		
20	Parallel resonance and its conditions	Diagram explanation and derivation	Solve circuit examples		
21	Selectivity and practical importance of resonance	Real-life applications and charts	Group discussion on uses		
22	Introduction to coupled circuits	Simple explanation with examples	Identify coupled coil examples		
23	Coefficient of coupling and mutual inductance	Diagram and formula- based explanation	Solve basic problems		
24	Dot convention and polarity rules	Diagram explanation	Label dots and polarities on circuit		
25	Equivalent circuit of coupled coils	Analytical and step-by- step method	Draw equivalent diagrams		
26	Energy stored in coupled coils	Formula explanation with examples	Solve energy calculation question		
27	Unit Test and Revision	Recap and Q&A discussion	Worksheet and short quiz		
	Sec	etion-D, Unit-4, CO-C204.	4		

28	Introduction to two- port networks and their applications	Simple explanation with examples	Group discussion
29	Impedance (Z) parameters – Definition and equations	Board explanation with circuit examples	Solve for Z- parameters
30	Admittance (Y) parameters – Definition and equations	Derivation and tabular comparison	Write equations for Y-parameters
31	Hybrid (h) parameters – Definition and conversion	Chart explanation with examples	Practice conversion problems
32	Transmission parameters and their significance	Block diagram method	Derive ABCD equations
33	Relationship between different parameters	Step-by-step derivation	Tabulate conversions
34	Symmetrical and reciprocal conditions of two-port networks	Analytical discussion with examples	Identify conditions in problems
35	Interconnection of two-port networks	Diagram explanation	Solve example problems
36	Practical examples and applications of two-port networks	Real-life circuit demonstration	Write case- based notes
37	Unit Test and Revision	Recap with question- answer session	Worksheet / Quiz

Text Books:

- 1. Van, Valkenburg.; "Network Analysis", 3rd Edition, Pearson Education, 2015.
- 2. Sudhakar A. Shyammohan, S. P.; "Circuits and Network"; Tata McGraw-Hill New Delhi, 1994
- 3. A William Hayt, "Engineering Circuit Analysis" 8th Edition, McGraw-Hill Education
- 4. S.K Bhattacharya & Manpreet Singh, Network Analysis and Synthesis, Pearson Education, 2015.

Reference Books:

1. Network Theory by U.A Bakshi, V.A Bakshi, Technical Publications

- 2. "Fundamentals of Electric Circuit" by C.K Alexander and Sadiku.
- 3. A.V. Oppenheim, A.S. Willsky, with S. Nawaab "Signals & Systems" 2nd Edition, Pearson Education, 2015.

Course Outcomes:

- 1. Understand basics electrical circuits with nodal and mesh analysis.
- 2. Appreciate electrical network theorems.
- 3. Apply Laplace Transform for steady state and transient analysis.
- 4. Determine different network functions and appreciate the frequency domain techniques.

CO-PO & PSO Mapping

	P	P	P	P	P	P	P	P	P	PO	PO	PO	PS	PS	PS
	01	O2	03	O 4	O5	O 6	O 7	O8	O 9	10	11	12	01	O2	O3
C O1	3	3	2									1	3	2	
C O2	3	3	2									1	3	2	
C O3	3	2	2										3	2	
C O4	3	2	3	2								1	3	3	2

3 = Strong correlation

2 = Moderate correlation

1 = Low correlation

Blank = No correlation

Signature of Staff In charge

Signature of HoD