

DPG Institute of Technology and Management Sector 34, Gurugram HR 122004

Lesson Plan

Course Name: DIGITAL LOGIC AND COMPUTER ARCHITECTURE

Faculty Name: RICHA NEHRA

No. of Lecture Hours/Week	3	Exam Hours	3
Total No. of Lecture Hours	40	Exam Marks	75
Course Code:	PCC-CSE-251G	Semester	3 rd

Course Objectives:

- 1. To understand the basic theoretical concepts of digital systems like the binary system and Boolean algebra.
- 2. To express real life problem in logic design terminology.
- 3. To use Boolean algebraic formulations to design digital systems. To design using combinational/sequential circuits.
- 4. To understand the Instruction execution stages and the functions of the various computer hardware components

Lecture No.	Topics to be covered	Teaching Methodology	Class Activity/ Event	Remark /CO
UNIT -1				
1	Introduction to Digital Systems & Data Representation, Number Systems (Binary, Octal, Hexadecimal)	Chalk &Talk		
2	Number Base Conversions	Chalk &Talk	Practice conversions in class	
3	Complements (1's & 2's), Signed-Magnitude & Signed-1/2's	PPT/Chalk &Talk	Problem- solving session	
4	Binary Codes (BCD, Gray Code, Excess-3, ASCII)	Chalk &Talk	Demonstrati on using tables	CO1
5	Logic Functions: Basic Logic Gates, Truth Tables	Chalk &Talk		
6	Universal Gates (NAND & NOR), Realization of expressions	Chalk &Talk		
7	Boolean Algebra Laws, De Morgan's Theorem Simplification	Chalk &Talk	Board derivations	
8	Minimization of Boolean Expressions (K-map up to 4 variables)	Chalk &Talk	Practice K- map problems	
9	Combinational Circuits (Adder, Subtractor, MUX, DEMUX, Encoder, Decoder)	Chalk &Talk		

	Combinational Circuits (MUX, DEMUX, Encoder, Decoder)	Chalk &Talk		
10	Design of Synchronous Sequential Circuits – Flip-Flops, FSM Concepts	Chalk &Talk	Classroom design task	
11	Unit-II Revision & Problem Solving		Assignment -1	
UNIT -2				
12	Fixed-Point Representation & Arithmetic	Chalk &Talk		
13	Floating Point Representation (IEEE Standards)	Chalk & Talk		
14	Addition & Subtraction Algorithms (Fixed & Floating Point)	Chalk &Talk		
15	Booth's Algorithm for Multiplication	Chalk &Talk		
16	Division Algorithms (Restoring & Non-restoring)	Chalk &Talk		CO2
17	ALU Design & Hardware Implementation of Arithmetic Operations	Chalk &Talk		
18	High Performance Arithmetic (Carry Look-Ahead, Pipeline arithmetic)	Chalk &Talk		
19	Unit-II Revision & Problem Solving	Discussion		
UNIT -3				
20	Overview of CPU Organization	Chalk &Talk		
21	ALU Structure, Status Flags	PPT		
22	Register Transfers & Micro-operations	PPT		
23	Instruction Cycle & Execution of Instructions	SMART BOARD		CO3
24	Multiple Bus Organization	SMART BOARD		
25	Control Unit Design – Hardwired	Chalk &Talk		
26	Control Unit Design – Microprogrammed	Chalk &Talk		
27	Memory Concepts: Types of Memory (RAM, ROM)	Discussion		
28	Memory Hierarchy & Cache Memory Design (Mapping, Replacement)		Assignment -2	
29	Virtual Memory & Paging			
30	Secondary Storage (HDD, SSD) & Memory Management Requirements			
31	Unit-III Revision & Quiz		Assessment activity	
UNIT -4				
32	Introduction to I/O Systems	Chalk &Talk		

33	Interrupts, Hardware Interrupt Mechanism	SMART BOARD		
34	Enabling & Disabling Interrupts, ISR Handling	Chalk &Talk		
35	Device Control & Programmed I/O	Chalk &Talk		CO4
36	Direct Memory Access (DMA) – Operation &	Chalk &Talk		
27	Controller Design	C1 11 0 T 11		I
37	Buses: PCI, USB, System Bus Architecture	Chalk &Talk		I
38	Interface Circuits & Standard I/O Interfaces	Chalk &Talk		
39	Unit-IV Revision		Mock test /	
39	Unit-1 v Revision		viva]
40	Final Course Review			1

Assessment Methods: -

S.No.	Evaluation Component	Assessment Method	Marks
1	Internal Marks		25
		Attendance	5
2		Quiz/Presentation	5
3		Assignment	5
4		Avg of Sessional 1&2	10
5	External Marks	Final University Exam	75

Reference Books:

- 1.R. P. Jain, "Modern DigitalElectronics", McGrawHillEducation, 2009.
- 2. M. M.Mano, "Digital logic and Computerdesign", Pearson Education India, 2016.
- 3. A. Kumar, "Fundamentals of Digital Circuits", Prentice HallIndia, 2016.
- 4. Nasib Singh Gill and J B Dixit, "Digital Design and Computer Organization", University Science Press, New Delhi

Course Outcomes:

At the end of the course, the student will be able:

CO 1	Able to convert data into actionable insights
CO 2	Analyze and validate the models using appropriate performance metrics
CO 3	Build clustering and classification models using R environment
CO 4	Present the results using effective visualization techniques