

DPG Institute of Technology and Management Sector 34, Gurugram HR 122004

Lesson Plan

Course Name: Discrete Mathematics

Faculty Name: DR. RITU BHATIA

No. of Lecture Hours/Week	4 (3L+1T)	Exam Hours	3
Total No. of Lecture Hours	51	Exam Marks	75
Course Code:	PCC-CSE-202G		

Course Objectives:

- 1. To motivate the students to understand mathematical problems based on concepts of set theory, relations, functions, lattices and logical statements.
- 2. To encourage the students to apply basic counting techniques to solve permutation and combination problems.
- 3. To inspire the students to classify algebraic structure of any given mathematical problem
- 4. To lead the students to develop the given problem as graph networks and solve with techniques of graph theory.

Lecture No	Topics to be covered	Teaching Methodology / Pedagogy	Activity	Remarks							
SECTION A(Unit-1) (CO-201.1)											
1	Introduction to Sets. Operations and Laws of Sets	PPT/Smart Board									
2	Cartesian Products, Representation of relations, Binary Relation	Chalk &Talk									
3	Equivalence Relation, Partial Ordering Relation, POSET	Chalk &Talk									
4	Finite and infinite Sets, Countable and Uncountable Sets	NPTEL https://youtu.be/6jBu-1s3ZwU?si=1RK qN_GgOcGtjdf 6	Quiz/MCQ								
5	Cantor's diagonal argument and The Power Set theorem	Chalk &Talk									
6	Function, Bijective functions, Inverse and Composite Function	Chalk &Talk									
7	Inverse and Composite Function	Chalk & Talk									
8	Hasse Diagram	Chalk &Talk									
9	Lattices and its types	https://youtu.be/ 3UkC3sXLqhQ ?si=5Nb5ZfD4v ClfKm4u									
10	Schroeder-Bernstein theorem	Chalk &Talk									

11	Propositions and Logical operations	Chalk &Talk		
12	Conditional Statements, Tautologies,	Chalk &Talk	Group	
	Contradictions, Logical Relation		Discussion	
	SECTION B(Unit-2) (C	CO-201.2)		
13	Basic Counting principle	Chalk &Talk		
14	Pigeon-hole principle, Permutation and	PPT		
	Combination			
15	Concept of Division algorithm	Chalk &Talk	Assignment	
16	Prime Numbers, The GCD: Euclidean	Smart Board		
	Algorithm			
17	The Fundamental Theorem of Arithmetic	Chalk & Talk		
18	Linear recurrence relation with constant	NPTEL		
	coefficients	https://youtu.		
		be/LyX37QRm		
		<u>liI?si=CPJN8zTj</u>		
		<u>GtikfJgX</u>		
19	Homogenous Solutions, Particular Solutions,	Chalk &Talk		
	Total Solution			
20	Colving non-homogeneous necumana nelation	Chalk &Talk		
20	Solving non-homogeneous recurrence relation	Chair & Fair		
21	Introduction to generating function	Chalk &Talk		
22	Solving recurrence relation using generating	Chalk & Talk		
	functions			
23	Class Test			
	SECTION (Unit-3) (Co			
24	Definitions and examples of Algebraic	Chalk &Talk		
	Structures with one Binary Operation			
25	Semi Groups, Monoids, Groups	PPT		
26	Congruence Relation and Quotient	Chalk &Talk		
27	Structures	C1 11 0 FT 11		
27	Permutation Groups, Cyclic groups	Chalk &Talk		
28	Examples of group and cyclic group	Chalk & Talk		
29	Coset and Normal Subgroups	Chalk &Talk		
30	Lagrange's theorem for finite group	Chalk & Talk Chalk & Talk		
31	Definitions and examples of Algebraic	Chalk & Talk Chalk & Talk		
31	Structures with two binary operation	Chair & Lair		
32	Numericals on Algebraic Structures with	Chalk &Talk		
32	one and two binary operation	Chair & Fair		
33	Rings, Integral Domain, Fields,	Chalk & Talk		
34	Boolean Algebra and Boolean Ring	Flip Class		
35	Duality, Representation of Boolean Function	Chalk & Talk	Students	
33	Duanty, Representation of boolean Pullchon	GHAIR & LAIK	Presentation	
36	Disjunctive and Conjunctive Normal Form	Chalk & Talk	1 Tesemanon	
	SECTION D(Unit-4) (C			

37	Graphs and their properties, Degree and	PPT		
	Connectivity			
38	Path, Cycle, Sub Graph, Isomorphism	Chalk & Talk	Quiz	
39	Multigraph and Weighted graph	NPTEL		
		https://youtu.		
		be/BdGuz3Agb		
		ag?si=7sM0yw		
		<u>CFXAvgE8Dq</u>		
40	Eulerian paths and circuits	Chalk &Talk		
41	Shortest path in Weighted graphs	Chalk &Talk		
42	Hamiltonian path and circuits	Chalk & Talk		
43	Planar Graphs	Chalk &Talk	Group	
43			Discussion	
44	Euler's formulae and Euler's Theorem	Chalk &Talk		
45	Graph Colouring	Chalk &Talk		
46	Trees Sorting, Spanning tree	Chalk &Talk		
47	Minimal Spanning tree	Chalk &Talk		
48	Doubt Session	Chalk &Talk		
49	Class Test			
	Content Beyond	Syllabus		
50	Extra theorem on sets and group	NPTEL video		
51	Adjancency and Incidence Matrix Representation of graph	PPT		

Suggested Text / Reference Books

Text books:

- 1. Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw-Hill
- 2. Satinder Bal Gupta: A Text Book of Discrete Mathematics and Structures, University Science Press, Delhi.
- 3. C. L. Liu and D. P. Mohapatra, Elements of Discrete Mathematics A Computer Oriented Approach, Tata McGraw-Hill.
- 4. J.P. Tremblay and R. Manohar, Discrete mathematical structures with applications to computer science, TMG Edition, Tata Mcgraw-Hill
- 5. Discrete Mathematics, Babu Ram, Pearson Publication
- 6. Discrete Mathematics, Semyour, Lipschutz and Marc Lipson, Schaum's outline

Course Outcomes:

At the end of the course, the student will be able:

CO201.1	To solve mathematical problems based on concepts of set theory, relations, functions, lattices and express logic sentence in terms of quantifiers and logical connectives.
CO201.2	To apply basic counting techniques to solve permutation and combination problems and solve recurrence relations.
CO201.3	To classify algebraic structure of any given mathematical problem and evaluate Boolean functions and simplify expressions using the properties of Boolean algebra.

CO201.4	To develop the given problem as graph networks and solve with techniques of
	graph theory.

CO-PO-PSO Mapping:

	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	РО	PO12	PSO	PSO	PSO
	1									0	11		1	<mark>2</mark>	<mark>3</mark>
CO1	2	1	1		1	1				1	2	3	2	1	2
CO2	2	1	3	2	2		1		2	2	2	3	2	2	2
CO3	2	1	3	2	2		1		2	2	2	3	2	2	2
CO4	2	1	3	2	2		1		2	2	2	3	2	2	2

Signature of Staff In-charge

Signature of HOD

Dr. Ritu Bhatia Dr. Simpi Mehta