

DPG Institute of Technology and Management Sector 34, Gurugram HR 122004

Lesson Plan

Course Name: B.TECH (CSE&DATA SCIENCE)

Faculty Name: Archana Rohilla (Assistant Professor)

No. of Lecture Hours/Week		Exam Hours	3
Total No. of Lecture Hours		Exam Marks	75
Course Code:	PCC-CSE-307G	SEMESTER	5 th

Course Objectives:

- 1. Analyze the asymptotic performance of algorithms.
- 2. Write rigorous correctness proofs for algorithms.
- 3. Demonstrate a familiarity with major algorithms and data structures
- 4. Apply important algorithmic design paradigms and methods of analysis.
- 5. Synthesize efficient algorithms in common engineering design situations.

Lecture No.	Topics to be covered	Teaching Methodology	Class Activity/ Event	Remark /CO
SECTION A	Introduction to Algorithms:			CO1
1	Algorithm	PPT		
2	Performance Analysis (Time and Space complexity)	Chalk &Talk		
3	Asymptotic Notation (Big OH, Omega and Theta)	Chalk &Talk		
4	Best, average and worst-case behavior	Chalk &Talk		
5	Elementary Data Structures (Basic	SMART		
	terminology of Stacks and Queues,	BOARD		
	Tree, Graph)			
6	Stacks	Chalk &Talk	Assignment-1	
7	Queues			
8	Tree	Chalk &Talk		
9	Graph	Chalk &Talk		
10	Sets and Disjoint Set Union.	SMART		
		BOARD		
11	Divide and Conquer: General method,	Chalk &Talk		
12	Binary Search			
13	Merge Sort	Chalk &Talk		
14	Quick Sort	Chalk &Talk		
15	Strassen's Matrix Multiplication	Chalk &Talk		
	algorithms and analysis			
SECTION B	Greedy Method:	Chalk &Talk		CO2
16	General method			

17	Fractional Knapsack problem	Chalk &Talk		
18	Job Sequencing with Deadlines	Chalk &Talk		
19	Minimum Cost Spanning Trees	Chalk &Talk		
20	Single source shortest paths	PPT		
21	Dynamic Programming: General method	PPT		
22	Optimal Binary Search Trees			
23	0/1 knapsack			
24	The Traveling Salesperson problem	PPT		
SECTION C	Back Tracking:	Chalk &Talk		CO3
25	General method	Chalk &Talk		
26	The 8-Queen's problem	Chalk &Talk		
27	Sum of subsets	SMART		
		BOARD		
28	Graph Colouring	Chalk &Talk		
29	Hamiltonian Cycles			
30	Branch and Bound: The method	Chalk &Talk		
31	0/1 knapsack problem	Chalk &Talk		
32	Traveling Salesperson problem	SMART		
		BOARD		
33	Efficiency considerations	Chalk &Talk		
SECTION D	NP Hard and NP Complete Problems:			CO4
34	Basic concepts: NP Hard	Chalk &Talk		
35	Basic concepts: NP Complete	Chalk &Talk		
36	Cook's theorem	Chalk &Talk		
37	NP hard graph problems	Chalk &Talk		
38	NP hard scheduling problems			
39	NP hard code generation problems	Chalk &Talk		
40	Some simplified NP hard problems	Chalk &Talk	Assigment-2	
41	REVISION	Chalk &Talk		
42	REVISION	PPT		

Suggested Text / Reference Books

- 1. The Design and Analysis of Computer Algorithm, Aho A.V. Hopcroft J.E., 1974, Addison Wesley.
- 2. Algorithms-The Construction, Proof and Analysis of Programs, Berlion, P.Bizard, P., 1986. Johan Wiley & Sons,
- 3. Writing Efficient Programs, Bentley, J.L., PHI
- 4. Introduction to Design and Analysis of Algorithm, Goodman, S.E. & Hedetnieni, 1997, MGH.
- 5. Introduction to Computers Science- An algorithms approach, Jean Paul Trembley, Richard B.Bunt, 2002, T.M.H.
- 6. Fundamentals of Algorithms: The Art of Computer Programming Vol Knuth, D.E.: 1985, Naresh Publication.

Course Outcomes:

At the end of the course, the student will be able:

CO 1	To identify and justify correctness of algorithms and to analyse running time of
	algorithms based on asymptotic analysis.
CO 2	To understand when an algorithmic design situation calls for the divide-and-conquer
	paradigm. Synthesize divide-and-conquer algorithms.
CO 3	Describe the greedy paradigm and dynamic-programming paradigm. Explain when an
	algorithmic design situation calls for it
CO 4	Developing greedy algorithms/dynamic programming algorithms, and analyze it to
	determine its computational complexity.
CO 5	To write the algorithm using Backtracking and Branch and Bound strategy to solve the
	problems for any given model engineering problem.