# **Lesson Plan**



# DPG Institute of Technology and Management Sector 34, Gurugram HR 122004 Lesson Plan Course Name: Neural Networks Faculty Name: Ms. Renu Vadhera

| No. of Lecture<br>Hours/Week  | 3            | Exam Hours | 3  |
|-------------------------------|--------------|------------|----|
| Total No. of Lecture<br>Hours | 32           | Exam Marks | 75 |
| Course Code                   | PCC-CSE-401G |            |    |

## **Course Objectives**

- 1. To understand the different issues involved in the design and implementation of Neural Networks.
- 2. To study the basics of neural networks and its activation functions.
- 3. To understand and use of perceptron and its application in real world
- 4. To develop an understanding of essential NN concepts such as: learning, feed forward and feed backward
- 5. To design and build a simple NN model to solve a problem

| S.<br>No | Topics to be covered                                           | Teaching<br>Methodology | Activity                                                   | Remarks |  |  |
|----------|----------------------------------------------------------------|-------------------------|------------------------------------------------------------|---------|--|--|
|          | SECTION A – Unit 1: Introduction to Neural Networks CO401.1    |                         |                                                            |         |  |  |
| 1        | Overview of biological neurons: structure of biological neuron | Chalk & Talk            | Draw biological neuron structure                           |         |  |  |
| 2        | Neurobiological analogy                                        | Chalk & Talk            | Comparison chart between biological and artificial neurons |         |  |  |
|          | Biological neuron equivalence to artificial neuron model       | Chalk & Talk            | Diagram of artificial neuron model                         |         |  |  |
| 4        | Evolution of neural networks                                   | PPT                     | Discussion on historical development                       |         |  |  |
| 11       | Activation functions – introduction and importance             | Chalk & Talk            | Brainstorming session                                      |         |  |  |
| 6        | Threshold and Signum functions                                 | Chalk & Talk            | Solve example threshold calculations                       |         |  |  |
| 7        | Sigmoid and Tan-hyperbolic functions                           | PPT                     | Graph plotting in notebook                                 |         |  |  |
| 8        | Stochastic and Ramp functions                                  | Chalk & Talk            | Graph sketching activity                                   |         |  |  |
| 9        | Linear and Identity functions                                  | Chalk & Talk            | Example-based demonstration                                |         |  |  |
| 110      | ANN Architecture: Introduction and types                       | Chalk & Talk            | Classification diagram of ANN                              |         |  |  |
|          | Feed forward and Feed backward networks                        | Chalk & Talk            | Draw simple feedforward diagram                            |         |  |  |

| S.<br>No | Topics to be covered                                    | Teaching<br>Methodology | Activity                                      | Remarks |
|----------|---------------------------------------------------------|-------------------------|-----------------------------------------------|---------|
| 12       | Single and multi-layer networks                         | Chalk & Talk            | Comparison activity                           |         |
| 13       | Fully recurrent networks                                | PPT                     | Class discussion and sketch                   |         |
|          | SECTION B – Unit 2: Bas                                 | sic Neural Netwo        | ork Models CO401.2                            |         |
| 14       | McCulloch & Pitts (MCP) Neural<br>Network: Architecture | Chalk & Talk            | Step-by-step derivation                       |         |
| 15       | Solution of AND function using MCP model                | Chalk & Talk            | Numerical example                             |         |
| 16       | Solution of OR function using MCP model                 | Chalk & Talk            | Problem-solving in notebook                   |         |
| 17       | Hebb Model: Architecture, training and testing          | Chalk & Talk            | Write Hebbian learning equation               |         |
| 18       | Hebb network for AND function                           | Chalk & Talk            | Practice AND example                          |         |
| 19       | Perceptron Network: Architecture                        | Chalk & Talk            | Block diagram of perceptron                   |         |
| 20       | Perceptron: Training and Testing                        | PPT                     | Numerical exercise                            |         |
| 21       | Single and multi-output models                          | Chalk & Talk            | Case-based example                            |         |
| 22       | Perceptron for AND function                             | Chalk & Talk            | Class exercise                                |         |
| 23       | Linear function and applications                        | Chalk & Talk            | Discussion on regression analogy              |         |
| 24       | Linear separability concept                             | Chalk & Talk            | Diagram of separable vs<br>non-separable data |         |
| 25       | Solution of OR function using linear separability model | Chalk & Talk            | Numerical solution                            |         |
|          | SECTION C – Unit 3: Le                                  | arning in Neura         | Networks CO401.3                              |         |
| 26       | Learning paradigms: Supervised and Unsupervised         | Chalk & Talk            | Comparison table activity                     |         |
| 27       | Reinforcement learning                                  | PPT                     | Real-world example discussion                 |         |
| 28       | Gradient Descent algorithm                              | Chalk & Talk            | Numerical illustration of weight update       |         |
| 29       | Generalized delta learning rule                         | Chalk & Talk            | Derivation and example                        |         |
| 30       | Hebbian and Competitive learning                        | Chalk & Talk            | Comparison activity                           |         |
| 31       | Backpropagation network: Architecture                   | Chalk & Talk            | Draw BPN block diagram                        |         |
| 32       | Training and Testing of BPN                             | PPT                     | Python demonstration or pseudocode            |         |
|          | SECTION D – Unit 4: Ass                                 | sociative Memor         | y Networks Co401.4                            |         |
| 33       | Associative Memory: Concept and Types                   | Chalk & Talk            | Discussion on memory analogy                  |         |
| 34       | Auto & Hetero associative memory – architecture         | Chalk & Talk            | Diagram drawing                               |         |

| S.<br>No | II I anias ta ha aayarad                                                                     | Teaching<br>Methodology | Activity                     | Remarks |
|----------|----------------------------------------------------------------------------------------------|-------------------------|------------------------------|---------|
| 35       | Training and Testing using Hebb & Outer Product Rule, Storage capacity, Bidirectional memory | Chalk & Talk            | Solved numerical and summary |         |

# **Suggested Text / Reference Books**

## **Text books:**

Reference Books:

- 1. "Neural Networks : A Comprehensive formulation", Simon Haykin, 1998, AW
- 2. "Neural Networks", Kosko, 1992, PHI.
- 3. "Neural Network Fundamentals" N.K. Bose, P. Liang, 2002, T.M.H
- 4. Neural Network, T.N.Shankar, University Science Press
- 5. Neuro Fuzzy Systems, Lamba, V.K., University Science Press

Signature of Staff In-charge

Signature of HOD