

DPG Institute of Technology and Management Sector 34, Gurugram HR 122004

Lesson Plan

Course Name: Mathematics for AI

Faculty Name: Mr. Avikshit Sharma

No. of Lecture Hours/Week	5	Exam Hours	3
Total No. of Lecture Hours	3	Exam Marks	75
Course Code:	BSC-CSE-271G		

Course Objectives:

- 1. To develop the understanding of functions of several variables, limits, continuity, and partial derivatives, and Euler's theorem and Lagrange's multipliers for solving problems.
- 2. To evaluate double and triple integrals, perform change of order and variables, and apply these concepts in computing areas and volumes bounded by curves and surfaces.
- 3. To introduce methods of solving first-order and first-degree differential equations, and to apply electric circuits, cooling, heat flow, and orthogonal trajectories.
- 4. To provide an understanding of linear differential equations of higher order, their complementary and particular solutions, and their applications in modeling oscillatory systems.

S.No	Topics to be covered	Teaching Methodology	Activity	Remarks									
	SECTION A												
	Multivariable Differential Calculus												
1	Limit	Chalk &Talk											
2	Homogeneous functions	Chalk &Talk											
3	Saddle points	Chalk &Talk											
4	Lagrange's method of undetermined multipliers	Chalk &Talk											
5	Total derivative	Chalk &Talk											

6	Continuity	Chalk &Talk									
7	Questions Practice on limit	Chalk &Talk									
8	Exercise on Total Derivative	Chalk &Talk									
9	Daily life application of continuity	Chalk &Talk									
	SECTION B	1	-								
	Multivariable Integral (Calculus									
10											
11	Change of order of integration	Chalk &Talk									
12	Change of variables	Chalk &Talk									
13	Applications of double integral to find area enclosed by plane curves	Chalk &Talk									
14	Triple integral	Chalk &Talk									
15	Exercise on double Integral	Chalk &Talk									
16	Double integral	https://youtu. be/mleeVrv44 7s									
	SECTION C										
Or	dinary differential equations of first and high	er order and their applica	tions								
17	Exact differential equations	https://youtu.b e/FU- 7xJLpoWg									
18	Equations reducible to exact differential equations	NPTEL									
19	Applications of differential equations of first order and first degree to simple electric circuits	NPTEL									
20	Newton's law of cooling	NPTEL									
21	Heat flow	PPT									
22	Orthogonal trajectories	PPT									
23	Exact differential equations	https://youtu.b e/FU- 7xJLpoWg									

24 25 26	Linear differential equations of second order. Application on linear differential equations of higher order Exercise	https://youtu.b e/NBcGLLU9 OfM	
	Section-D		
	Vector Calculus		
27	Vector differentiation- Vector and Scalar point function and their differentiation.		
28	Gradient of a Scaler function, Divergence and Curl of a vector point functions.		
29	Physical interpretation of divergence and curl.		
30	Exercise and problem solving		
31	Integration of a vector point function. Line integral.		
32	Double integral of a vector point function		
33	Triple integral of a vector function		
34	Gauss-divergence theorem		
35	Green's theorem		
36	Stokes theorem		
37	Exercise and problem solving.		

SUGGESTED READINGS:

- 1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, Pearson Education.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill Publishing Company Limited.
- 4. N. P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications.
- 5. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 6. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, Wiley India.
- 7. S. L. Ross, Differential Equations, Wiley India.

- 8. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India.
- 9. E. L. Ince, Ordinary Differential Equations, Dover Publications

Course Outcomes:

At the end of the course, the student will be able:

CO 1	To deal with functions of several variables and evaluate partial derivative.
CO 2	The mathematical tools needed in evaluating multiple integrals and their usage.
CO 3	The effective mathematical tools for the solutions of ordinary differential equations that model physical processes.
CO 4	To understand the integral and differential calculus for the vector point function.

CO-PO-PSO Mapping:

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO 11	PO12	PSO 1	PSO 2	PSO 3
CO1															
CO2															
CO3															
CO4															