

DPG Institute of Technology and Management Sector 34, Gurugram HR -122004

Lesson Plan

Course Name: Semiconductor Physics

Faculty Name: Dr. Dhananjay Verma

Lesson Plan

No. of Lecture Hours/Week	5	Exam Hours	3
Total No. of Lecture Hours	45	Exam Marks	70
Course Code	25BSC-PHY-103H		

Objectives of the course:

- 1. To give knowledge of shortcomings of classical mechanics and fundamentals of quantum mechanics.
- 2. To teach the origin of energy bands in solids and different types of electronic materials.
- 3. To introduce the students to semiconducting devices.
- 4. To develop a basic understanding of lasers and optical fibres and their usage in communication, optoelectronic devices, medical, etc.

Detailed Lesson Plan

Lecture No.	Topic	Teaching Methodology	Class Activity	Remarks					
Unit-1									
1	Limitations of classical mechanics	Chalk & Lecture	Lecture with Interaction						
2	Black body radiation	Chalk & Lecture	Lecture with Interaction						
3	Planck's radiation law	Chalk & Lecture	Lecture with Interaction						
4	Photoelectric effect	Chalk & Lecture	Lecture with Interaction						
5	Compton effect	Chalk & Lecture	Lecture with Interaction						
6	de-Broglie's hypothesis	Chalk & Lecture	Lecture with Interaction						
7	Wave-particle duality	Chalk & Lecture	Lecture with Interaction						

8	Uncertainty principle	Chalk & Lecture	Lecture with Interaction						
9	Physical significance of wave function ψ	Chalk & Lecture	Lecture with Interaction						
10	Time-dependent Schrodinger wave equation	Chalk & Lecture	Lecture with Interaction						
11	Time-independent Schrodinger wave equation	Chalk & Lecture	Lecture with Interaction						
12	Particle in a 1-D box	Chalk & Lecture	Lecture with Interaction						
Unit-2									
13	Free electron theory	Chalk & Lecture	Lecture with Interaction						
14	Drude model	Chalk & Lecture	Lecture with Interaction						
15	Kronig-Penny model	Chalk & Lecture	Lecture with Interaction						
16	Origin of band gap	Chalk & Lecture	Lecture with Interaction						
17	E-k diagram	Chalk & Lecture	Lecture with Interaction						
18	Direct and indirect band gaps	Chalk & Lecture	Lecture with Interaction						
19	Energy bands in solids	Chalk & Lecture	Lecture with Interaction						
20	Types of electronic materials: metals, semiconductors and insulators	Chalk & Lecture	Lecture with Interaction						
21	Occupation probability	Chalk & Lecture	Lecture with Interaction						
22	Fermi level	Chalk & Lecture	Lecture with Interaction						
23	Density of states	Chalk & Lecture	Lecture with Interaction						
24	Effective mass	Chalk & Lecture	Lecture with Interaction						
25	Phonons	Chalk & Lecture	Lecture with Interaction						
	Unit-3								

26	Intrinsic and extrinsic semiconductors	Chalk & Lecture	Lecture with Interaction	
27	Dependence of Fermi level on carrier-concentration and temperature	Chalk & Lecture	Lecture with Interaction	
28	Carrier transport: diffusion and drift	Chalk & Lecture	Lecture with Interaction	
29	p-n junction	Chalk & Lecture	Lecture with Interaction	
30	Heterojunctions	Chalk & Lecture	Lecture with Interaction	
31	Metal-semiconductor junction (Ohmic and Schottky)	Chalk & Lecture	Lecture with Interaction	
32	Photoconductivity and Photovoltaic effect	Chalk & Lecture	Lecture with Interaction	
33	Optoelectronics devices- photoconductive cell, photodiode	Chalk & Lecture	Lecture with Interaction	
34	Solar cell and LED	Chalk & Lecture	Lecture with Interaction	
		Unit-4		
34	Einstein's theory of matter radiation interaction-absorption & emission	Chalk & Lecture	Lecture with Interaction	
36	Spontaneous and stimulated emission of radiation	Chalk & Lecture	Lecture with Interaction	
37	Relation between Einstein's coefficient of stimulated emission and absorption	Chalk & Lecture	Lecture with Interaction	
38	Population inversion & pumping	Chalk & Lecture	Lecture with Interaction	
39	Three and four level laser systems	Chalk & Lecture	Lecture with Interaction	
40	Characteristics of laser beam	Chalk & Lecture	Lecture with Interaction	
41	Gas laser (He-Ne)	Chalk & Lecture	Lecture with Interaction	
42	Solid-state laser (Ruby),	Chalk & Lecture	Lecture with Interaction	
43	Semiconductor laser	Chalk & Lecture	Lecture with Interaction	
44	Applications of lasers	Chalk & Lecture	Lecture with Interaction	

Suggested Reference Books:

- 1. Ajoy Ghatak and S. Lokanathan, Quantum Machenics: Theory and Applications, Springer Science (2004).
- 2. Aurthur Beiser, Concept of Modern Physics, McGrawHill (2003).
- 3. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).
- 4. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., (2007).
- 5. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley (2008).
- 6. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, New York (2007).
- 7. P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).
- 8. Online course: "Semiconductor Optoelectronics" by M R Shenoy on NPTEL
- 9. Online course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Gupta on NPTEL

Course Outcomes:

At the end of the course, the student will be able:

CO103.1	To analyse the difference between classical and quantum mechanical									
	phenomena. Students will have knowledge of the dual nature of matter and the									
	fundamental equation of motion in quantum mechanics.									
CO103.2	Understanding the origin of energy bands in solids and analyse the differences									
	between different types of electronic materials.									
CO103.3	Understanding the physics and applications of semiconducting materials.									
	Getting the knowledge of charge carrier flow mechanisms in semiconductors									
	and optoelectronic devices.									
CO103.4	Understanding spontaneous and stimulated emission of radiation, optical									
	pumping, population inversion, three-level and four-level lasers. Ruby, He-Ne									
	laser in detail and its applications.									

CO-PO-PSO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO	PSO	PSO	PSO
										10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Signature of Staff In-charge

Signature of HOD